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Note: Each contestant is credited with the largest sum of points obtained for three problems.

1. A positive integer divisible by 7 is shown on a computer screen. The cursor marks a
gap between some pair of its consecutive digits. Prove that there is a digit that can be
inserted into the marked gap any number of times so that the resulting number is always
divisible by 7. (5 points)

2. There are 2019 crickets sitting on a straight line. Consider each cricket to be a point on
the line. At each move one of the crickets jumps over one of the other crickets, landing at
a point that is the same distance away from that cricket as before the jump. Jumping to
the right only, the crickets are able to position themselves so that some pair of them are
located exactly 1 mm from each other. Prove that the crickets are also able to position
themselves so that two of them are exactly 1 mm apart, with the crickets jumping to the
left only, and starting from the same initial position. (6 points)

3. Two equal non-intersecting wooden discs, one coloured grey and the other black, are in a
fixed position of the plane. A wooden triangle with one grey edge and one black edge can
be moved in the plane so that the discs remain outside the triangle while the coloured
edges of the triangle are tangent to the discs of the same colour (the points of tangency
not being the vertices). Prove that it is possible to draw a ray emanating from the vertex
of the angle and inside the angle so that no matter how the angle is positioned, the ray
passes through a fixed point in the plane. (7 points)

4. It is desired that all the squares of an n× n table (n > 1) be filled with distinct integers
from 1 to n2, such that there is one number per square, and each pair of consecutive
integers are placed in squares that share a side, while any pair of integers having the
same remainder on division by n are placed in distinct rows and distinct columns. For
which n is this possible? (8 points)
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5. The orthogonal projection of a tetrahedron onto a plane containing one of its faces is a
trapezium of area 1.

(a) Is it possible that the orthogonal projection of the tetrahedron onto a plane containing
one of its other faces is a square of area 1? (4 points)

(b) The same question as (a) for a square of area 1/2019. (4 points)

6. Petya and Vasya play a game with a pile of cards. For each subset of five different
variables from the set {x1, . . . , x10} there is a single card with their product written on
the card. With Petya starting, Petya and Vasya alternate choosing one card from the pile
of cards. After all cards have been drawn from the pile, Vasya assigns numerical values
to the variables as he wants, except that he must ensure 0 ≤ x1 ≤ · · · ≤ x10. Can Vasya
make his assignations in such a way that ensures the sum of the products on his cards is
greater than the sum of the products on Petya’s cards? (8 points)

7. On the grid plane all possible broken lines with the following properties are constructed:
each broken line starts at the point (0, 0), it has all its vertices at points with integer
coordinates and each line segment either goes up or to the right along the grid lines.
For each broken line consider a corresponding worm, which is a shape consisting of grid
squares that share at least one point with the broken line. Prove that the number of worms
that can be divided into dominoes (2 × 1 or 1 × 2 rectangles) in exactly n > 2 different
ways, is equal to the number of positive integers that are less than n and relatively prime
to n. (Worms are different, if they consist of different sets of grid squares.) (12 points)


